Cours de mathématiques P.S.I.*

D'après les cours de M. Guillaumie

Henriet Quentin

Fonctions vectorielles - Accroissements finis et formules de Taylor

Dans ce chapitre, E désigne un espace vectoriel normé sur \mathbb{K} de dimension finie p.

I est un intervalle de $\mathbb R$ non réduit à un point . f est une application de I dans E ,

et $f_1,...,f_p$ sont les applications composantes de f dans une base $\mathcal B$ de E.

1. Inégalités des accroissements finis

Théorème : Inégalité des accroissements finis :

Soit $f \in \mathcal{C}^1(I, E)$. On suppose qu'il existe $M \ge 0$ tel que $\forall t \in I$, $||f'(t)|| \le M$. Alors $\forall (x, x') \in I^2$, $||f(x) - f(x')|| \le M|x - x'|$.

Preuve:

$$\forall (x, x') \in I^2, \ f(x) - f(x') = \int_{x'}^{x} f'(t) dt. \ \text{Ainsi } ||f(x) - f(x')|| \le \left| \int_{x'}^{x} ||f'(t)|| dt \right| \le M|x - x'|.$$

Remarque:

L'hypothèse « f' bornée » est réalisée en particulier dans le cas d'un segment.

Corollaire 1:

Soit $f:[a,b]\to E$, continue sur [a,b], de classe \mathscr{C}^1 sur]a,b[, et telle qu'il existe $M\geqslant 0$ tel que $\forall t\in]a,b[$, $\|f'(t)\|\leqslant M$. Alors $\|f(b)-f(a)\|\leqslant M|b-a|$.

Preuve:

Soit $(x, x') \in]a, b[^2]$. D'après l'inégalité des accroissements finis appliqué entre x et x', on a $||f(x)-f(x')|| \le M|x-x'|$. Il suffit alors de faire tendre x vers a, et x' vers b, et de conclure par continuité.

Corollaire 2

Toute application de classe \mathscr{C}^1 sur un intervalle, dont la dérivée est bornée sur cet intervalle, y est lipschitzienne. Plus précisément, si $f \in \mathscr{C}^1(I, E)$, f est k-lipschitzienne sur I, avec $k = \sup_{x \in I} \|f'(x)\|$.

Théorème : Théorème de la dérivée continue :

Soit $f \in \mathcal{C}^0([a,b], E)$, de classe \mathcal{C}^1 sur [a,b], et telle que $\lim_{t \to a} f'(t) = L$. Alors f est de classe \mathcal{C}^1 sur [a,b], et f'(a) = L.

Preuve .

Soit g(t) = f(t) - f(a) - (t-a)L. g est continue sur [a,b], de classe \mathscr{C}^1 sur [a,b], et à valeurs dans E.

g'(t)=f'(t)-L. Soit $\varepsilon>0$. $\exists \alpha>0$ tel que $\forall t\in]a,a+\alpha[\cap]a,b], ||f'(t)-L||<\varepsilon$.

Quitte à restreindre α , on peut supposer que $a + \alpha \le b$.

Donc $\forall t \in]a, a+\alpha[, \|g'(t)\| \leq \varepsilon$, et g est continue sur $[a, a+\alpha]$.

Ainsi $\forall t \in [a, a+\alpha], \|g(t)-g(a)\| \le \varepsilon(t-a),$ d'après l'inégalité des accroissements finis.

Donc $\forall t \in]a, a+\alpha[, \|f(t)-f(a)-(t-a)L\| \leq \varepsilon(t-a), (t-a>0), \text{ et donc } \left\|\frac{f(t)-f(a)}{t-a}-L\right\| \leq \varepsilon.$

Donc la limite de $\frac{f(t)-f(a)}{t-a}$ quand $t \rightarrow a$ vaut L.

f' est donc continue en a, donc f est de classe \mathscr{C}^1 sur [a,b], et f'(a)=L.

Corollaire 1:

Soit $c \in]a, b[$, et $f \in \mathcal{C}^0([a, b], E)$, de classe \mathcal{C}^1 sur $[a, c[\cup]c, b]$.

On suppose que f' admet des limites à droites et à gauche en c.

- 1. f est dérivable à droite et à gauche en c.
- 2. $f_{d}'(c) = \lim_{c^{+}} f'$, et $f_{g}'(c) = \lim_{c^{-}} f'$. 3. f est de classe \mathscr{C}^{1} par morceaux sur [a,b].

Remarque:

On peut écrire des variantes de ce corollaire si f' admet seulement une limite à droite ou à gauche en c, si on se place sur un intervalle quelconque de \mathbb{R} , ou si c est une borne de cet intervalle.

Corollaire 2:

Soient $n \in \mathbb{N}^*$, et $(a_0, ..., a_N)$ une subdivision de [a,b]. Soit $f \in \mathcal{C}^{n-1}([a,b], E)$, de classe \mathscr{C}^n sur $\bigcup_{0 \le i \le N-1}]a_i$, $a_{i+1}[$. On suppose que $f^{(n)}$ admet des limites à droite et à gauche en chaque a_i .

Alors f est de classe \mathcal{C}^n par morcaux sur [a,b].

Exemple:

Soit $f: x \in \mathbb{R} \mapsto \begin{cases} e^{-\frac{1}{x^2}}, & \text{si } x \neq 0. \\ 0, & \text{si } x = 0 \end{cases}$ est continue sur \mathbb{R} , et paire. On se limite à $[0, +\infty[$.

Sur $]0, +\infty[$, f est de classe \mathscr{C}^{∞} . $\forall x \in]0, +\infty[$, $f'(x) = \frac{2}{x^3}e^{-\frac{1}{x^2}}$, et $\lim_{x \to \infty} f'(x) = 0$.

Ainsi f est de classe \mathscr{C}^0 sur $[0,+\infty[$, de classe \mathscr{C}^1 sur $]0,+\infty[$, et $\lim_{x\to\infty}f'(x)=0$:

Par théorème, f est de classe \mathscr{C}^1 sur $[0, +\infty[$.

1. Hypothèse de récurrence : Pour $n \in \mathbb{N}$, $\exists P_n \in \mathbb{R}[X]$ tel que $\forall x > 0$, $f^{(n)}(x) = \frac{P_n(x)}{x^{3n}} e^{-\frac{1}{x^2}}$.

L'hypothèse est vérifiée aux rangs 0 et 1. Supposons alors $n \in \mathbb{N}$, et l'hypothèse vraie au rang n.

Alors
$$f^{(n+1)}(x) = \left[\frac{P_n'(x)x^3 - 3nx^2P_n(x)}{x^{3n+3}} + \frac{P_n(x)}{x^{3n}} \frac{2}{x^2} \right] e^{-\frac{1}{x^2}} = \frac{P_{n+1}(x)}{x^{3n+3}} e^{-\frac{1}{x^2}}.$$

L'hypothèse est vérifiée au rang n+1, elle est donc vraie par récurrence $\forall n \in \mathbb{N}$.

Hypothèse de récurrence : Pour $n \in \mathbb{N}$, $f \in \mathcal{C}^n([0,+\infty[), \text{ et } f^{(n)}(0)=0.$

L'hypothèse est vérifiée aux rangs 0 et 1. Supposons alors $n \in \mathbb{N}$, et l'hypothèse vraie au rang n.

Si $f^{(n)}$ est de classe \mathscr{C}^0 sur $[0,+\infty[$, et de classe \mathscr{C}^1 sur $]0,+\infty[$, et $\lim_{n\to\infty} f^{(n+1)}(x)=0$, alors par théorème,

 $f^{(n)}$ est de classe \mathscr{C}^1 sur \mathbb{R} , et $f^{(n+1)}(0)=0$.

L'hypothèse est vérifiée au rang n+1, elle est donc vraie par récurrence $\forall n \in \mathbb{N}$.

Ainsi f est de classe \mathscr{C}^{∞} sur \mathbb{R} , et telle que $\forall n \in \mathbb{N}$, $f^{(n)}(0) = 0$.

Formules de Taylor

Dans ce paragraphe, n est un entier naturel non nul, f est une fonction de classe \mathcal{C}^n sur l'intervalle I, et $a \in I$.

Définition:

La fonction polynôme $T_{n,f,a}$, ou plus simplement T_n définie par : $x \in I \mapsto \sum_{k=0}^n \frac{(x-a)^k}{k!} f^{(k)}(a)$, est appelée

polynôme de Taylor d'ordre n de f en a.

On appelle reste de Taylor d'ordre n de f en a l'application notée $R_{n,f,a}$, ou $R_n: x \in I \mapsto f(x) - T_n(x)$.

Théorème : Formule de Taylor avec reste intégral :

Soient
$$f \in \mathcal{C}^{n+1}(I, E)$$
, et $a \in I$. $\forall x \in I$, on a $f(x) = \sum_{k=0}^{n} \frac{(x-a)^k}{k!} f^{(k)}(a) + \int_a^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt$.

Remarque:

On obtient ainsi une expression exacte du reste, sous forme d'une intégrale.

Exemple:

En appliquant cette formule à $f: t \in [0,1] \mapsto e^{tz}$, $z \in \mathbb{C}$, entre 0 et 1 : $e^z = \sum_{k=0}^n \frac{z^k}{k!} + \int_0^1 \frac{(1-t)^n}{n!} z^{n+1} e^{tz} dt$.

En posant z=a+ib, $(a,b) \in \mathbb{R}^2$, on en déduit :

$$|R_n(z)| \leq \int_0^1 \frac{(1-t)^n}{n!} |z|^{n+1} e^{at} dt \leq \max(1, e^a) \frac{|z|^{n+1}}{n!} \int_0^1 (1-t)^n dt = \max(1, e^a) \frac{|z|^{n+1}}{(n+1)!}.$$

Comme $\lim_{n\to\infty} \frac{|z|^{n+1}}{(n+1)!} = 0$, on déduit : $|R_n(z)| \underset{n\to\infty}{\to} 0$.

On retrouve ainsi que la série $\sum_{n\geq 0} \frac{z^n}{n!}$ converge, et que $\sum_{n=0}^{\infty} z^{nover} n! = e^z$. Ainsi $\forall z \in \mathbb{C}$, $\exp(z) = e^z$.

T<u>héorème : Inégalité de Taylor-Lagrange :</u>

Soient
$$f \in \mathcal{C}^n(I, E)$$
, et $a \in I$. On suppose qu'il existe $M \ge 0$ tel que $\forall t \in I$, $||f^{(n)}(t)|| \le M$.
Alors $\forall x \in I$, $||f(x) - \sum_{k=0}^{n} t \, n - 1 \, \frac{(x-a)^k}{k!} \, f^{(k)}(a)|| \le M \, \frac{|x-a^n|}{n!}$.

Proposition :

Soient $f \in \mathcal{C}^n(I, E)$, $n \ge 1$, et $a \in I$.

Si
$$f^{(n)}$$
 est bornée sur I , alors $\forall h \in \mathbb{R}$ tel que $a+h \in I$, $\left\| f(a+h) - \sum_{k=0}^{n-1} \frac{h^k}{k!} f^{(k)}(a) \right\| \leq \left(\sup_{t \in I} \left\| f^{(n)}(t) \right\| \right) \frac{|h|^n}{n!}$.

Proposition (hors programme):

Soient $f \in \mathcal{C}^n(I, R)$, $n \ge 1$, et $a \in I$.

$$\forall h \in \mathbb{R} \text{ tel que } a+h \in I, \text{ il existe } \theta_h \in]0,1[\text{ tel que } f(a+h) = \sum_{k=0}^{n-1} \frac{h^k}{k!} f^{(k)}(a) + \frac{h^n}{n!} f^{(n)}(a+h\theta_h).$$

Remarques:

Ce résultat est hors-programme, et doit donc être redémontré lorsqu'il est utilisé.

Il se prouve à l'aide du théorème de Rolle, en introduisant une fonction auxiliaire adaptée.

Ce résultat n'est valable que dans le cas réel.

Théorème :

Soient
$$f \in \mathcal{C}^n(I, E)$$
, et $a \in I$. Alors $f(a+h) = \sum_{k=0}^n \frac{h^k}{k!} f^{(k)}(a) + o(h^n)$.

Remarque :

Il s'agit ici d'un résultat local, dont une des principales applications est l'obtentions des développements limités.

* * * * *